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ABSTRACT 
Nowadays error checking becomes more and more signifi-
cant for constructing high reliable software. In this paper, 
we will introduce our work of integrating static error check-
ing into Open64. We are devoting to construct an aggres-
sive program analysis framework for error checking in the 
compiler. We integrate the intraprocedural analysis into 
interprocedural phase in order to do flow- and context-
sensitive whole program analysis. The precision of alias 
information can heavily impact many consequent analyses 
and error checking. We also have improved the original 
alias analysis to be field-sensitive so that field members of 
the same structural object can be distinguished in the re-
sulted points-to graph 
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1. Introduction 
Open64 is a high performance compiler for generating ef-
fective binary codes. Up to now it can generate code for the 
Intel IA-64, Intel IA-32e and AMD X8664 architecture. It 
derives from the SGI compiler for the MIPS R10000 pro-
cessor, called MIPSPro. It was released under the GNU 
GPL in 2000, and now mostly serves as a research platform 
for compiler and computer architecture research groups. 
Open64 supports Fortran 77/95 and C/C++, as well as the 
shared memory programming model OpenMP. It can con-
duct high-quality interprocedural analysis, data-flow analy-
sis, data dependence analysis, and array region analysis. 
However, existed scalar analysis of Open64 is not precise 
enough to serve for static error checking since it is original-
ly designed for optimizations. The original interprocedural 
framework is to summary each procedure flow-insensitively 
first, and then transfers the summarized information on the 
procedure call graph iteratively. This framework limits us to 
perform flow-sensitive interprocedural analysis inconve-
niently. For example, we cannot obtain the must modified 
side effect information of a single procedure since we can-
not determine whether a global variable is modified on all 
paths from entry to exit in the local control flow in the 
summary phase. Also the original framework is field-
insensitive. Although the intraprocedural data-flow analysis 
is field-sensitive, the intraprocedural alias analysis is field-

insensitive. Field-insensitive alias analysis avoids us obtain-
ing field-sensitive mod/ref information, which means that 
we cannot make sure whether a specific field of a structural 
object is modified or referenced by a procedure. 
Our aim is to improve the interprocedural phase in order to 
obtain more precision in analysis, and to be more accurate 
in error checking furthermore. To gain flow-sensitivity, we 
integrate the intraprocedural analysis phase into interproce-
dural phase, allowing the interprocedural analysis to access 
and update local control-flow and data-flow information 
flexibly. To achieve context-sensitivity, transfer functions 
modeling procedure effects are computed for each proce-
dure, and are used in each call site. Several data-flow prob-
lems, e.g. pointer analysis, const propagation, program slic-
ing and etc, can be solved in a common framework called 
modular interprocedural analysis such as in [2] that is com-
posed of two passes of analyzing the whole program. The 
first pass traverses on the procedure call graph in a bottom-
up order, computing transfer functions for each procedure. 
The second pass traverses on the call graph in a top-down 
order, propagating data flow values from the entry to the 
exit of each local control flow graph. Transfer functions are 
used to get the result of procedure side effect when the top-
down phase propagates data flow values over a function 
call. Field-sensitivity is obtained by treating each field of 
any structural object as an individual variable in all kinds of 
analysis. Fields in the same structure are distinguished in 
the form of offset from its base structure and its data type 
size according to the target machine information. 
Under the new framework, statically checking common 
programming errors are developed. We abstract several 
kinds of error checking problems as a common dataflow 
problem that can be solved using the fix point theory on a 
semi-lattice [3]. Consequently the error checking problem is 
treated as a common data flow analysis under the frame-
work. We have developed a program template that concen-
trates on flow- and context-sensitive interprocedural dataf-
low analysis by using C++ generic programming.  
We have also improved the original pointer analysis of 
Open64 to be field-sensitive. We have provided two kinds 
of pointer analysis. One is directly implemented from [1], 
and the other is designed by ourselves in which we consider 
the target machine ABI in the intermediate representations. 
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The former one achieves more precision and higher effi-
ciency than the original one. The latter one achieves more 
precision than the former one while maintains almost the 
same efficiency as it. 
Our main contributions to Open64 are that we have de-
signed and implemented: 
 A flow- and context-sensitive interprocedural framework 

under which kinds of error checking are performed. 
 Two kinds of efficient field-sensitive pointer analysis.  
The rest of this paper is organized as follows: In Section 2, 
we introduce the new framework and the work we have 
done in Open64 briefly. In Section 3 we describe the poin-
ter analysis. In Section 4, we propose the flow- and context-
sensitive interprocedural analysis method in detail and its 
application in error checking. We survey related work in 
Section 5 and conclude in Section 6. 

2. Framework 
The new framework is displayed in Figure 1. It starts after 
the phase IPA_LINK linking all WHIRL representations 
together. The interprocedural analysis produces useful in-
formation for the consequent client error checking. 
The analysis starts with a field-sensitive unification-based 
pointer analysis [1] which is flow- and context-insensitive 
to locate the target of function pointers. Once the targets of 
function pointers are determined, we begin to build a pro-
cedure call graph in which an indirect call site through a 
function pointer is modeled as a branch of direct calls to its 
target. We intend to design and implement a pointer analy-
sis architecture that employs several kinds of field-sensitive 
algorithms that differ in precision and efficiency. The series 
of pointer analysis are performed in the increasing order of 
precision. Each analysis is performed on the base of the 
former analysis so that we can obtain higher efficiency than 
performing the analysis separately. The first pointer analy-
sis of the pointer architecture is the field-sensitive unifica-
tion-based pointer analysis. Other field-sensitive flow- and 
context-insensitive pointer analysis may also be performed 
after this, e.g. inclusion-based pointer analysis [5] [6] to 
make the result points-to graph more precise and further 
refine the call graph. Up to now, only the field-sensitive 
unification-based pointer analysis has been implemented. 
The interprocedural control flow optimization includes 
Dead Function Elimination (DFE) and Fake Control Flow 
Elimination (FCFE). FCFE recognizes the program points 
where control flow must terminate, i.e. exit the whole pro-
gram, and eliminates the fake control flow starting from 
these points. For example, the “abort” function and “exit” 
function in C/C++ language can cause the running process 
to terminate. Recognizing these program points can help us 
avoid control flow reaching the consequent program points 
immediately after the terminated point, and furthermore 
eliminate fake data flow. We define termination procedure 
as a procedure which may terminate the running process in 

sequential programs. The termination procedure in C/C++ 
does not contain only the “abort” and “exit” function, but 
also consists of any wrapper procedure that invokes termi-
nation procedures on one path of its control flow graph. 
Thereby, recognizing termination procedures is an interpro-
cedural flow- and context-sensitive problem. We compute 
transfer function for each procedure that under which input 
the procedure must terminate. We create individual control 
flow graph for each procedure and refine it after FCFE. 
After the interprocedural control flow optimization, we start 
to construct the Static Single Assignment (SSA) form [7] 
for each procedure. The data flow analysis infrastructure in 
WOPT has been migrated to IPA phase, allowing us to do 
data flow analysis flexibly. The result of pointer analysis is 
used to make SSA form more precise. Also for the sake of 
precision, zero versioning and virtual variable techniques [8] 
for building SSA are improved. Another way to construct 
SSA form is to perform the flow- and context-sensitive 
pointer analysis which analyzes the points-to sets of va-
riables in each program point while building SSA form. The 
flow- and context-sensitive pointer analysis is now under 
developing and will be introduced in another article. 

3. Field-sensitive pointer analysis 
The field-sensitive pointer analysis is unification-based and 
is improved from [1]. We have implemented the original 
algorithm in [1] as well as our improved one and obtain the 
performance results in Table 1 and Table 2. 
Table 1 displays the comparison between the current alias 
analysis of Open64 which directly implements the algo-
rithm in [4] and the algorithm in [1]. The former one is 
field-insensitive. The example benchmarks are all taken 
from SPEC2000.  

The columns of the table identify: 
 Example : the benchmark name ; 
 KLOC: the size of the benchmark (line numbers counted 

by kilo lines); 
 Field OPs: the number of indirect memory access to 

fields of structural objects;  
Classes: the number of alias classes of the total Field 
OPs above; memory access operations in the same alias 
class are regarded as aliased, viz. they access the same 
memory location. 

 Max: the maximal number of Field OPs in the same 
alias class; 

 Min: the minimal number of Field OPs in the same alias 
class; 

 Average: the average number of Field OPs in the same 
alias class, Calculated by division Field OPs by Classes. 

 Time: the time for analyzing the benchmark; 
 



To our surprise, the analyzing time of field-insensitive 
Steensgaard classification is more than the field-sensitive 
one. We trace the analyzing process and find out that the 
exceeding time is spent on the union-find operation since 
object pointed to by all undistinguished fields must be 
joined. The latter is more precise and efficient than the for-
mer one. 
Table 2 shows the comparison between the algorithm in [4] 
and our improved algorithm. They are both field-sensitive. 
The improved algorithm is precise than the original one 
while is a little less in efficiency. The main idea of im-
provement is to consider memory layout in high-level anal-
ysis in order to precisely distinguish fields of structure ob-
jects. In our improved method, a field in the program is 
represented by a pair of offset from its base structure and 

size of its own data type. The implementation of this field 
representation makes use of the target ABI information on 
WHIRL representation. Furthermore, we have lowered all 
the structural memory operations to a series of scalar mem-
ory operations based on the target machine information, 
allowing consequential data flow analysis more aggressive. 
The method is also portable due to the architecture of 
Open64. 
We take a small program as an example to indicate intui-
tively that considering memory layout in the high-level 
analysis is more aggressive. The example showed in Figure 
3(a) is taken from [1]. Figure 3(b) displays the result points-
to graph of analysis in [1]. Figure 3(c) shows the result 
points-to graph of our improved algorithm for the target 
machine X8664.   

Static error checker 

Interprocedural Analyzer 

IPA_LINK 
  

IPL summay phase  

FICI pointer analysis 
 

FICS 
pointer 
analysis 

FSCS 
pointer 
analysis 

Interprocedural control flow optimization 

Build Call Graph 
 

Construct SSA Form for each procedure 
 

FICI = Flow- and  
Context-insensitive.  

FICS= Flow-insensitive but  
         Context-sensitive.  
FSCS= Flow- and  

Context-sensitive. 
 
FICS and FSCS have not been 
implemented yet. 

Figure 1. The flow- and context-sensitive framework in Open64. 



Example KLOC 
Field 
Ops 

Field-insensitive 
Steensgaard Classification 

Field-sensitive 
Steensgaard Classification 

Classes  Max  Min  Average 
Time 
(secs) 

Classes  Max  Min  Average 
Time 
(secs) 

mcf 0.9 562 7 527 1 80.28 0.02 34 376 1 16.52 0.02 

bzip2 2.4 87 2 69 18 43.5 0.03 2 69 18 43.5 0.03 

gzip 3.6 244 4 222 4 61 0.05 37 72 1 6.59 0.05 

parser 7.4 2375 18 2115 3 131.94 0.13 61 2003 1 38.93 0.11 

vpr 8.7 1649 23 1408 2 71.69 0.17 159 955 1 10.37 0.14 

crafty 9.7 830 6 268 30 138.33 0.5 74 268 1 11.21 0.22 

twolf 15 6457 1 6457 6457 6457 0.48 80 4495 1 80.71 0.23 

vortex 25 8062 90 7631 1 89.57 1.17 274 7616 1 29.42 0.60 

gap 28 11480 9 11459 1 1275.55 1.04 134 11023 1 85.67 0.60 

 
 

Example KLOC 
Field 
Ops 

Field-sensitive 
Steensgaard Classification 

Aggressively Field-sensitive 
Classification 

Classes  Max  Min  Average 
Time 
(secs) 

Classes  Max  Min  Average 
Time 
(secs) 

mcf 0.9 562 34 376 1 16.52 0.02 69 39 1 8.14 0.02 

bzip2 2.4 87 2 69 18 43.5 0.03 7 26 6 12.42 0.03 

gzip 3.6 244 37 72 1 6.59 0.05 44 49 1 5.54 0.05 

parser 7.4 2375 61 2003 1 38.93 0.11 88 1989 1 26.98 0.13 

 
The increase of precision also benefits from improving the 
type hierarchy proposed in [1] which defined the partial 
order among scalars and structured objects. The original 
type hierarchy is showed in Figure 2(a). The type hierarchy 
provides a necessary requirement for partial order a ⊴s b to 
hold is that a and b are either of the same kind or the kind 
of b appears above the kind of a in the hierarchy [1]. It re-
sults in the conditional ⊑s join and conditional join ⊴s of 
simple type and struct type conservatively, since both of 
them must be promoted to object type. We make a change 
for the type hierarchy and corresponding change in type 
system that enables the result of joining simple type and 
struct type is another struct type with only fields possibly 
overlapped with the scalar joined. The new hierarchy is 
showed in Figure 2(b). 

4. Flow- and context-sensitive dataflow analy-
sis 

In this section, we will introduce our flow- and context-
sensitive engine for global data flow analysis and its one 
application. We have implemented the data-flow engine in 
C++ template for the sake of code reusing. The engine con-

sists of two components, one is a transfer function evaluator 
and the other is a dataflow value propagator. 

 
The transfer function evaluator computes transfer functions 
for each procedure which summarize the effect of this pro-
cedure under a specific data flow problem. A single transfer 

object 

simple 

struct 

blank 

(a)  Type hierarchy in [1]  (b)  The improved type 
hierarchy 

Figure 2. The comparison in type hierarchy 

object 

simple struct 

blank 

Table 2. Comparing the analysis in [1] with our improved method 

Table 1. Comparing current alias analysis in Open64 with the analysis in [1] 



 
function has the form 1 2( , ... )ny f x x x= , in which y 
denotes a formal-out parameter and x1…xn denote a list of 
formal-in parameters. A formal-in parameter of a proce-
dure is either a declared formal parameter or a location 
whose value at the procedure entry may be accessed by 
the procedure or the procedures it invokes. Such location 
may be a global variable, an allocated object or 
represented by dereference of pointers. Similarly, the for-

mal-out parameters of a procedure include not only the 
return value of this procedure but also all the locations 
whose value at the procedure exit may be accessed out of 
the procedure. The function body of f gives the mapping 
relations between inputs x1…xn and the output y. Since a 
procedure may have more than one formal-out parameters, 
it may have a group of transfer functions each of which 
summarizes the procedure effect for one of the formal-out 
parameters. 

τ1 
τ7 τ2 

τ3 

τ4 
τ5 
τ6 
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τ9 
τ10 
τ11 

τ12 
τ13 

i2: τ1  s1.a:  τ8 

s2: τ2  s3.d:  τ8 

s4: τ3  s1.b:  τ9 

i3: τ4  s3.e:  τ9 

i4: τ5  s1.c:  τ10 

f2: τ6  s3.f:  τ11 
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i2: τ1  s1.a:  τ8 

s2: τ2  s3.d:  τ8 
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i4: τ5  s1.c:  τ10 

f2: τ6  s3.f:  τ10 

s1: τ7  s3.g:  τ10 

s3: τ7  i1:  τ11 

      

int i1, *i2, **i3, **i4; 

float   f1, **f2; 

struct { int  a, *b, *c; }  s1, *s2; 

struct { int  d, *e; float  f, *g }  s3, *s4; 

s2 = &s1; 

s4 = &s3; 

f2 = &s4->g; 

*f2 = &f1; 

i3 = &s2->b; 

i4 = &s2->c; 

*i4 = &i1; 

i2 = (int*) s2; 

i2 = (int*) s4; 

(c) points-to graph of improved alogorithm for the IA-
32 target 

(a)  a small C program  

(b) points-to graph of analysis in [1]  

Figure 3. Intuitively compare work in [1] with our improved work. 



We compute transfer functions for each procedure over 
the procedure call graph in a bottom-up order, from cal-
lees to callers. When computing a caller’s transfer func-
tion, all callees’ transfer functions have been already 
computed and are compounded into the caller’s transfer 
function if there is no circle in the call graph. To handle 
recursions, we reduced the call graph to a SCC-DAG 
(Strongly Connected Component Directed Acyclic Graph) 
and perform iterations in each SCC. 
The dataflow value propagator propagates dataflow value 
from the entry to the exit of each procedure’s local control 
flow graph, and propagates on the call graph in a top-
down manner. A data flow value is an element of the 
semi-lattice corresponding to different data flow problems. 
At the entry of each procedure, we perform the “meet” 
operation on the data flow values from difference call 
sites for each formal-in parameter. At each callsite, we 
propagate value of each actual-in parameter to the corres-
ponding formal-in parameter of the callee at first. Then we 
obtain the value of each formal-out parameter by applying 
the transfer function to the value of formal-in parameters 
and propagate it to the corresponding actual-out parameter. 
If there are recursions in the program, we also need to 
perform iterations in each SCC. We have provided a ge-
neric algorithm for solving forward dataflow problems. 
The pseudo code is displayed in Figure 4. The intraproce-
dural algorithm traverses local control flow graph in topo-
logical order while manipulating a dataflow value stack 
for each variable. The stack records a sequence of dataf-
low value that stands for the dataflow trace by merging all 
paths from entry to the current program point. The top 
value of the stack is the current value in the program point. 
When processing an assignment statement, the result da-
taflow value is pushed into the stack. 
Our first application of the engine is to find all the possi-
ble references of uninitialized memory. Variables or allo-
cated memory objects can assume unexpected values if 
they are used before they are initialized. Referencing un-
initialized memory may cause a program to behave in an 
unpredictable or unplanned manner. 

4.1 Checking uninitialized reference 
We abstract the task as solving a dataflow problem in 
which any memory object in any reference site has as a 
property the dataflow value “define”, “may define” or 
“undefine”. If a memory object is initialized on all paths 
from the program entry (usually as “main” function) to the 
current reference site, the memory object in this site has 
the property “define”. If on some path the memory object 
is not initialized, the property will be “undefine”. The 
initialization through indirect memory operations (e.g. the 
deference of pointers) results in a property “may define”. 
To solve the problem we first invoke the transfer function  

 
evaluator to compute a transfer function for each proce-
dure. The transfer function of one procedure says that 
which global variables are modified by this procedure. In 
fact the transfer function evaluator performs an interpro-
cedural modified side effect analysis to the whole program. 
The side effect analysis can distinguish “must” and “may” 
mod information: 
i. If on every path in the procedure form entry to exit the 

global variable is modified by direct assignments, the 
variable is “must mod”.  

ii. Otherwise if in every path variable is modified by ei-
ther direct or indirect assignments, the variable is 
“may mod”.  

Propagate_on_proc ( proc )  
Begin 

changed ←false; 
for each node scc of CFG SCC_DAG in  

topological order    
if scc is not a recursive cycle and contains basic 

block bb 
   changed ∨←   

call Propagate_on_ bb ( bb ); 
else 

   changed ←true; 
   while ( changed ) 

  changed ← false; 
     for each bb of scc do 
     changed ∨←   

call Propagate_on_loop ( bb ); 
return changed; 

End 

Figure 4  The algorithm for interprocedural data flow 
value propagation 

/* Interprocedura dataflow value propagator  */ 

Dataflow_value_Propagator(call_graph ) 
Begin 

for each node scc of call_graph’s SCC_DAG in 
 topological order  
if scc is not a recursive cycle and contains proce-

dure proc 
call Propagate_on_proc( proc) 

else 
   changed ←true; 
   while ( changed ) 

  changed ← false; 
     for each proc of scc do 
     changed ∨←   

call Propagate_on_proc ( proc ); 
End  



iii. Otherwise the variable must not be modified on some 
of the paths, so it is “may not mod” 

We compute the transfer function of a procedure by build-
ing SSA form for the procedure first. If there are multiple 
exit nodes in the CFG, we connect all the exits to a unique 
exit node, called “fake exit”. We insert a SSA Φ-function 
in the “fake exit”, called “exit Φ”, for each global variable 
whose value is modified or referenced in the procedure 
body or in the body of procedures invoked by this proce-
dure. After building SSA form, we start to find the possi-
ble definitions of each global variable appeared in the exit 
Φ backwards from the fake exit to the entry in order to 
determine the modified property for the variable. 

The dataflow value propagator propagates the modifica-
tion property at procedure entry to the exit. The “must 
mod” and “may mod” value of a transfer function are both 
regarded as “define” in this phase. The “may not mod” 
value is regarded as “undefine” here. We only propagate 
for scalar variables that are either local or global currently. 
The experimental results are displayed in Table 3. The 
columns of the table identify: 

 Example : the benchmark name ; 
 KLOC: the size of the benchmark (line numbers 

counted by kilo lines); 
 Time: the time for checking the benchmark; 
 Reports: the total number of warnings produced on the 

benchmark;  
 Bugs: the number of true bugs found;  

 FP Rate: the false positive rate; 

Example Kloc 
Time 
(sec) 

Reports Bugs FP 
Rate 

mcf 0.9 0.01 3 3 0% 

bzip2 2.4 0.05 0 0 0% 

bftpd-2.3 2.8 0.08 2 1 50% 

gzip 3.6 0.11 1 1 0% 

HyperSAT-
1.7 6 0.11 1 0 100% 

parser 7.4 0.7 0 0 0% 

TOTAL 23.1 1.06 7 5 28.6% 

We have used compiler GCC with the warning option –
Wuninitialized to check the uninitialized reference for the 
examples in Table 3. However no warnings are reported. 
This is mainly because GCC can only check uninitialized 
reference for auto variables intraprocedurally. 

5. Related work 
In the literature of pointer analysis, much work has been 
devoted into improving the precise and efficiency from 

flow-sensitivity and context-sensitivity [2, 4, 5, 9-13]. 
However, field-sensitivity is somehow not taken seriously 
as the former two properties since there is not so much 
work in the literature. Due to the widely uses of aggregate 
objects in practical programs, the field-sensitivity can 
greatly impact the precision of pointer analysis. Steens-
gaard provided a field-sensitive version [1] of his original 
work [4]. Yong et al. proposes a framework of field-
sensitive points-to analysis that covers various levels of 
field-sensitivity [14]. They use separated variables to 
represent different fields. Their framework is designed to 
be able to handle type casing presenting in many C pro-
grams. Pearce et al. present a novel approach for precisely 
modeling structural variables and indirect function calls 
[6]. In their work field reference expressions are translated 
into a form of a variable plus a field id in the constraint 
system. Whaley’s work [12] is also field-sensitive. How-
ever, his method was originally designed for Java and he 
did not discuss how to handle type casting. 

Mygcc [15] is the first checking technique to combine 
checking and compiling together in order to do permanent 
checking. They call the checking is permanent because 
programmers can check programs while compiling the 
programs, avoiding extra time cost. Integrating checking 
to compiling also enables a software development method 
in which checking permanently accompanies evolution 
because compiling is always necessary in coding phase. 
However, their approach is not interprocedural. Other 
checking tools like Fast check [16], Saturn [17], Calysto 
[18] is not permanent. 

6. Conclusion and future work 
We have introduced our work of constructing an aggres-
sive framework for program analysis in order to do error 
checking in Open64. The framework integrates intrapro-
cedural analysis into interprocedural phase so that we can 
do flow- and context-sensitive whole program analysis. 
We have also improved the original alias analysis to be 
field-sensitive and compared the three unification-based 
methods.  

In the future, we are going to finish the pointer analysis 
architecture. We intend to implement a field-sensitive 
inclusion-based points-to analysis immediately after the 
unification-based method. To make the analysis more 
scalable, we will adopt the bootstrapping strategy, in-
spired by [13] that partitions the whole program into many 
slices. Statements that directly modified pointers in the 
same alias class will be put into the same slice. If we want 
to obtain the inclusion-based result of a pointer, it suffices 
to restrict the inclusion-based analysis only to the slice 
that directly modified the pointer and the slices that modi-
fy pointers which may point to the pointer. Since Ander-
son-styled pointer analysis has the cubic time complexity, 

Table 3. The uninitialized reference checking of scalar variables 



the bootstrapping method makes use of a simple formula 
to improve its efficiency:  

3 3 3
1 2 1 2( )x x x x+ ≥ + . 

The larger the program is, the more analysis time we can 
save. We have not implemented it yet. 

Benefiting from the unification-based points-to analysis, 
we have designed a scalable flow- and context-sensitive 
pointer analysis. The analysis takes advantage of the 
points-to graph given by the unification-based analysis to 
incrementally build SSA form while analyzing points-to 
set of each variable. We called the analysis “hierarchical 
analysis” since we analyze pointers in the increasing order 
of Steensgaard pointer graph. The analysis is under devel-
opment currently. 
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