
Aggressive Program Analysis Framework for Static Error
Checking in Open64

Hongtao Yu Wei Huo ZhaoQing Zhang XiaoBing Feng
Key Laboratory of Computer System and Architecture, Institute of Computing Technology,

Chinese Academy of Sciences, Beijing 100190, China

{ htyu, huowei, zqzhang, fxb }@ict.ac.cn

ABSTRACT
Nowadays error checking becomes more and more signifi-
cant for constructing high reliable software. In this paper,
we will introduce our work of integrating static error check-
ing into Open64. We are devoting to construct an aggres-
sive program analysis framework for error checking in the
compiler. We integrate the intraprocedural analysis into
interprocedural phase in order to do flow- and context-
sensitive whole program analysis. The precision of alias
information can heavily impact many consequent analyses
and error checking. We also have improved the original
alias analysis to be field-sensitive so that field members of
the same structural object can be distinguished in the re-
sulted points-to graph

Keywords
Program analysis, pointer analysis, error checking

1. Introduction
Open64 is a high performance compiler for generating ef-
fective binary codes. Up to now it can generate code for the
Intel IA-64, Intel IA-32e and AMD X8664 architecture. It
derives from the SGI compiler for the MIPS R10000 pro-
cessor, called MIPSPro. It was released under the GNU
GPL in 2000, and now mostly serves as a research platform
for compiler and computer architecture research groups.
Open64 supports Fortran 77/95 and C/C++, as well as the
shared memory programming model OpenMP. It can con-
duct high-quality interprocedural analysis, data-flow analy-
sis, data dependence analysis, and array region analysis.
However, existed scalar analysis of Open64 is not precise
enough to serve for static error checking since it is original-
ly designed for optimizations. The original interprocedural
framework is to summary each procedure flow-insensitively
first, and then transfers the summarized information on the
procedure call graph iteratively. This framework limits us to
perform flow-sensitive interprocedural analysis inconve-
niently. For example, we cannot obtain the must modified
side effect information of a single procedure since we can-
not determine whether a global variable is modified on all
paths from entry to exit in the local control flow in the
summary phase. Also the original framework is field-
insensitive. Although the intraprocedural data-flow analysis
is field-sensitive, the intraprocedural alias analysis is field-

insensitive. Field-insensitive alias analysis avoids us obtain-
ing field-sensitive mod/ref information, which means that
we cannot make sure whether a specific field of a structural
object is modified or referenced by a procedure.
Our aim is to improve the interprocedural phase in order to
obtain more precision in analysis, and to be more accurate
in error checking furthermore. To gain flow-sensitivity, we
integrate the intraprocedural analysis phase into interproce-
dural phase, allowing the interprocedural analysis to access
and update local control-flow and data-flow information
flexibly. To achieve context-sensitivity, transfer functions
modeling procedure effects are computed for each proce-
dure, and are used in each call site. Several data-flow prob-
lems, e.g. pointer analysis, const propagation, program slic-
ing and etc, can be solved in a common framework called
modular interprocedural analysis such as in [2] that is com-
posed of two passes of analyzing the whole program. The
first pass traverses on the procedure call graph in a bottom-
up order, computing transfer functions for each procedure.
The second pass traverses on the call graph in a top-down
order, propagating data flow values from the entry to the
exit of each local control flow graph. Transfer functions are
used to get the result of procedure side effect when the top-
down phase propagates data flow values over a function
call. Field-sensitivity is obtained by treating each field of
any structural object as an individual variable in all kinds of
analysis. Fields in the same structure are distinguished in
the form of offset from its base structure and its data type
size according to the target machine information.
Under the new framework, statically checking common
programming errors are developed. We abstract several
kinds of error checking problems as a common dataflow
problem that can be solved using the fix point theory on a
semi-lattice [3]. Consequently the error checking problem is
treated as a common data flow analysis under the frame-
work. We have developed a program template that concen-
trates on flow- and context-sensitive interprocedural dataf-
low analysis by using C++ generic programming.
We have also improved the original pointer analysis of
Open64 to be field-sensitive. We have provided two kinds
of pointer analysis. One is directly implemented from [1],
and the other is designed by ourselves in which we consider
the target machine ABI in the intermediate representations.

http://en.wikipedia.org/wiki/Intel�
http://en.wikipedia.org/wiki/IA-64�
http://en.wikipedia.org/wiki/Intel�
http://en.wikipedia.org/wiki/AMD�
http://en.wikipedia.org/wiki/Silicon_Graphics�
http://en.wikipedia.org/wiki/GNU_GPL�
http://en.wikipedia.org/wiki/GNU_GPL�
http://en.wikipedia.org/wiki/GNU_GPL�
http://en.wikipedia.org/wiki/Computer_architecture�
http://en.wikipedia.org/wiki/Fortran�
http://en.wikipedia.org/wiki/Shared_memory�
http://en.wikipedia.org/wiki/OpenMP�
http://en.wikipedia.org/wiki/Interprocedural_optimization�
http://en.wikipedia.org/wiki/Data-flow_analysis�
http://en.wikipedia.org/wiki/Data-flow_analysis�
http://en.wikipedia.org/w/index.php?title=Data_dependence_analysis&action=edit&redlink=1�
http://en.wikipedia.org/w/index.php?title=Array_region_analysis&action=edit&redlink=1�
http://en.wikipedia.org/wiki/Interprocedural_optimization�

The former one achieves more precision and higher effi-
ciency than the original one. The latter one achieves more
precision than the former one while maintains almost the
same efficiency as it.
Our main contributions to Open64 are that we have de-
signed and implemented:
 A flow- and context-sensitive interprocedural framework

under which kinds of error checking are performed.
 Two kinds of efficient field-sensitive pointer analysis.
The rest of this paper is organized as follows: In Section 2,
we introduce the new framework and the work we have
done in Open64 briefly. In Section 3 we describe the poin-
ter analysis. In Section 4, we propose the flow- and context-
sensitive interprocedural analysis method in detail and its
application in error checking. We survey related work in
Section 5 and conclude in Section 6.

2. Framework
The new framework is displayed in Figure 1. It starts after
the phase IPA_LINK linking all WHIRL representations
together. The interprocedural analysis produces useful in-
formation for the consequent client error checking.
The analysis starts with a field-sensitive unification-based
pointer analysis [1] which is flow- and context-insensitive
to locate the target of function pointers. Once the targets of
function pointers are determined, we begin to build a pro-
cedure call graph in which an indirect call site through a
function pointer is modeled as a branch of direct calls to its
target. We intend to design and implement a pointer analy-
sis architecture that employs several kinds of field-sensitive
algorithms that differ in precision and efficiency. The series
of pointer analysis are performed in the increasing order of
precision. Each analysis is performed on the base of the
former analysis so that we can obtain higher efficiency than
performing the analysis separately. The first pointer analy-
sis of the pointer architecture is the field-sensitive unifica-
tion-based pointer analysis. Other field-sensitive flow- and
context-insensitive pointer analysis may also be performed
after this, e.g. inclusion-based pointer analysis [5] [6] to
make the result points-to graph more precise and further
refine the call graph. Up to now, only the field-sensitive
unification-based pointer analysis has been implemented.
The interprocedural control flow optimization includes
Dead Function Elimination (DFE) and Fake Control Flow
Elimination (FCFE). FCFE recognizes the program points
where control flow must terminate, i.e. exit the whole pro-
gram, and eliminates the fake control flow starting from
these points. For example, the “abort” function and “exit”
function in C/C++ language can cause the running process
to terminate. Recognizing these program points can help us
avoid control flow reaching the consequent program points
immediately after the terminated point, and furthermore
eliminate fake data flow. We define termination procedure
as a procedure which may terminate the running process in

sequential programs. The termination procedure in C/C++
does not contain only the “abort” and “exit” function, but
also consists of any wrapper procedure that invokes termi-
nation procedures on one path of its control flow graph.
Thereby, recognizing termination procedures is an interpro-
cedural flow- and context-sensitive problem. We compute
transfer function for each procedure that under which input
the procedure must terminate. We create individual control
flow graph for each procedure and refine it after FCFE.
After the interprocedural control flow optimization, we start
to construct the Static Single Assignment (SSA) form [7]
for each procedure. The data flow analysis infrastructure in
WOPT has been migrated to IPA phase, allowing us to do
data flow analysis flexibly. The result of pointer analysis is
used to make SSA form more precise. Also for the sake of
precision, zero versioning and virtual variable techniques [8]
for building SSA are improved. Another way to construct
SSA form is to perform the flow- and context-sensitive
pointer analysis which analyzes the points-to sets of va-
riables in each program point while building SSA form. The
flow- and context-sensitive pointer analysis is now under
developing and will be introduced in another article.

3. Field-sensitive pointer analysis
The field-sensitive pointer analysis is unification-based and
is improved from [1]. We have implemented the original
algorithm in [1] as well as our improved one and obtain the
performance results in Table 1 and Table 2.
Table 1 displays the comparison between the current alias
analysis of Open64 which directly implements the algo-
rithm in [4] and the algorithm in [1]. The former one is
field-insensitive. The example benchmarks are all taken
from SPEC2000.

The columns of the table identify:
 Example : the benchmark name ;
 KLOC: the size of the benchmark (line numbers counted

by kilo lines);
 Field OPs: the number of indirect memory access to

fields of structural objects;
Classes: the number of alias classes of the total Field
OPs above; memory access operations in the same alias
class are regarded as aliased, viz. they access the same
memory location.

 Max: the maximal number of Field OPs in the same
alias class;

 Min: the minimal number of Field OPs in the same alias
class;

 Average: the average number of Field OPs in the same
alias class, Calculated by division Field OPs by Classes.

 Time: the time for analyzing the benchmark;

To our surprise, the analyzing time of field-insensitive
Steensgaard classification is more than the field-sensitive
one. We trace the analyzing process and find out that the
exceeding time is spent on the union-find operation since
object pointed to by all undistinguished fields must be
joined. The latter is more precise and efficient than the for-
mer one.
Table 2 shows the comparison between the algorithm in [4]
and our improved algorithm. They are both field-sensitive.
The improved algorithm is precise than the original one
while is a little less in efficiency. The main idea of im-
provement is to consider memory layout in high-level anal-
ysis in order to precisely distinguish fields of structure ob-
jects. In our improved method, a field in the program is
represented by a pair of offset from its base structure and

size of its own data type. The implementation of this field
representation makes use of the target ABI information on
WHIRL representation. Furthermore, we have lowered all
the structural memory operations to a series of scalar mem-
ory operations based on the target machine information,
allowing consequential data flow analysis more aggressive.
The method is also portable due to the architecture of
Open64.
We take a small program as an example to indicate intui-
tively that considering memory layout in the high-level
analysis is more aggressive. The example showed in Figure
3(a) is taken from [1]. Figure 3(b) displays the result points-
to graph of analysis in [1]. Figure 3(c) shows the result
points-to graph of our improved algorithm for the target
machine X8664.

Static error checker

Interprocedural Analyzer

IPA_LINK

IPL summay phase

FICI pointer analysis

FICS
pointer
analysis

FSCS
pointer
analysis

Interprocedural control flow optimization

Build Call Graph

Construct SSA Form for each procedure

FICI = Flow- and
Context-insensitive.

FICS= Flow-insensitive but
 Context-sensitive.
FSCS= Flow- and

Context-sensitive.

FICS and FSCS have not been
implemented yet.

Figure 1. The flow- and context-sensitive framework in Open64.

Example KLOC
Field
Ops

Field-insensitive
Steensgaard Classification

Field-sensitive
Steensgaard Classification

Classes Max Min Average
Time
(secs)

Classes Max Min Average
Time
(secs)

mcf 0.9 562 7 527 1 80.28 0.02 34 376 1 16.52 0.02

bzip2 2.4 87 2 69 18 43.5 0.03 2 69 18 43.5 0.03

gzip 3.6 244 4 222 4 61 0.05 37 72 1 6.59 0.05

parser 7.4 2375 18 2115 3 131.94 0.13 61 2003 1 38.93 0.11

vpr 8.7 1649 23 1408 2 71.69 0.17 159 955 1 10.37 0.14

crafty 9.7 830 6 268 30 138.33 0.5 74 268 1 11.21 0.22

twolf 15 6457 1 6457 6457 6457 0.48 80 4495 1 80.71 0.23

vortex 25 8062 90 7631 1 89.57 1.17 274 7616 1 29.42 0.60

gap 28 11480 9 11459 1 1275.55 1.04 134 11023 1 85.67 0.60

Example KLOC
Field
Ops

Field-sensitive
Steensgaard Classification

Aggressively Field-sensitive
Classification

Classes Max Min Average
Time
(secs)

Classes Max Min Average
Time
(secs)

mcf 0.9 562 34 376 1 16.52 0.02 69 39 1 8.14 0.02

bzip2 2.4 87 2 69 18 43.5 0.03 7 26 6 12.42 0.03

gzip 3.6 244 37 72 1 6.59 0.05 44 49 1 5.54 0.05

parser 7.4 2375 61 2003 1 38.93 0.11 88 1989 1 26.98 0.13

The increase of precision also benefits from improving the
type hierarchy proposed in [1] which defined the partial
order among scalars and structured objects. The original
type hierarchy is showed in Figure 2(a). The type hierarchy
provides a necessary requirement for partial order a ⊴s b to
hold is that a and b are either of the same kind or the kind
of b appears above the kind of a in the hierarchy [1]. It re-
sults in the conditional ⊑s join and conditional join ⊴s of
simple type and struct type conservatively, since both of
them must be promoted to object type. We make a change
for the type hierarchy and corresponding change in type
system that enables the result of joining simple type and
struct type is another struct type with only fields possibly
overlapped with the scalar joined. The new hierarchy is
showed in Figure 2(b).

4. Flow- and context-sensitive dataflow analy-
sis

In this section, we will introduce our flow- and context-
sensitive engine for global data flow analysis and its one
application. We have implemented the data-flow engine in
C++ template for the sake of code reusing. The engine con-

sists of two components, one is a transfer function evaluator
and the other is a dataflow value propagator.

The transfer function evaluator computes transfer functions
for each procedure which summarize the effect of this pro-
cedure under a specific data flow problem. A single transfer

object

simple

struct

blank

(a) Type hierarchy in [1] (b) The improved type
hierarchy

Figure 2. The comparison in type hierarchy

object

simple struct

blank

Table 2. Comparing the analysis in [1] with our improved method

Table 1. Comparing current alias analysis in Open64 with the analysis in [1]

function has the form 1 2(, ...)ny f x x x= , in which y
denotes a formal-out parameter and x1…xn denote a list of
formal-in parameters. A formal-in parameter of a proce-
dure is either a declared formal parameter or a location
whose value at the procedure entry may be accessed by
the procedure or the procedures it invokes. Such location
may be a global variable, an allocated object or
represented by dereference of pointers. Similarly, the for-

mal-out parameters of a procedure include not only the
return value of this procedure but also all the locations
whose value at the procedure exit may be accessed out of
the procedure. The function body of f gives the mapping
relations between inputs x1…xn and the output y. Since a
procedure may have more than one formal-out parameters,
it may have a group of transfer functions each of which
summarizes the procedure effect for one of the formal-out
parameters.

τ1
τ7 τ2

τ3

τ4
τ5
τ6

τ8
τ9
τ10
τ11

τ12
τ13

i2: τ1 s1.a: τ8

s2: τ2 s3.d: τ8

s4: τ3 s1.b: τ9

i3: τ4 s3.e: τ9

i4: τ5 s1.c: τ10

f2: τ6 s3.f: τ11

s1: τ7 s3.g: τ11

s3: τ7 i1: τ12

τ1
τ7 τ2

τ3

τ4
τ5
τ6

τ8
τ9
τ10 τ11

i2: τ1 s1.a: τ8

s2: τ2 s3.d: τ8

s4: τ3 s1.b: τ9

i3: τ4 s3.e: τ9

i4: τ5 s1.c: τ10

f2: τ6 s3.f: τ10

s1: τ7 s3.g: τ10

s3: τ7 i1: τ11

int i1, *i2, **i3, **i4;

float f1, **f2;

struct { int a, *b, *c; } s1, *s2;

struct { int d, *e; float f, *g } s3, *s4;

s2 = &s1;

s4 = &s3;

f2 = &s4->g;

*f2 = &f1;

i3 = &s2->b;

i4 = &s2->c;

*i4 = &i1;

i2 = (int*) s2;

i2 = (int*) s4;

(c) points-to graph of improved alogorithm for the IA-
32 target

(a) a small C program

(b) points-to graph of analysis in [1]

Figure 3. Intuitively compare work in [1] with our improved work.

We compute transfer functions for each procedure over
the procedure call graph in a bottom-up order, from cal-
lees to callers. When computing a caller’s transfer func-
tion, all callees’ transfer functions have been already
computed and are compounded into the caller’s transfer
function if there is no circle in the call graph. To handle
recursions, we reduced the call graph to a SCC-DAG
(Strongly Connected Component Directed Acyclic Graph)
and perform iterations in each SCC.
The dataflow value propagator propagates dataflow value
from the entry to the exit of each procedure’s local control
flow graph, and propagates on the call graph in a top-
down manner. A data flow value is an element of the
semi-lattice corresponding to different data flow problems.
At the entry of each procedure, we perform the “meet”
operation on the data flow values from difference call
sites for each formal-in parameter. At each callsite, we
propagate value of each actual-in parameter to the corres-
ponding formal-in parameter of the callee at first. Then we
obtain the value of each formal-out parameter by applying
the transfer function to the value of formal-in parameters
and propagate it to the corresponding actual-out parameter.
If there are recursions in the program, we also need to
perform iterations in each SCC. We have provided a ge-
neric algorithm for solving forward dataflow problems.
The pseudo code is displayed in Figure 4. The intraproce-
dural algorithm traverses local control flow graph in topo-
logical order while manipulating a dataflow value stack
for each variable. The stack records a sequence of dataf-
low value that stands for the dataflow trace by merging all
paths from entry to the current program point. The top
value of the stack is the current value in the program point.
When processing an assignment statement, the result da-
taflow value is pushed into the stack.
Our first application of the engine is to find all the possi-
ble references of uninitialized memory. Variables or allo-
cated memory objects can assume unexpected values if
they are used before they are initialized. Referencing un-
initialized memory may cause a program to behave in an
unpredictable or unplanned manner.

4.1 Checking uninitialized reference
We abstract the task as solving a dataflow problem in
which any memory object in any reference site has as a
property the dataflow value “define”, “may define” or
“undefine”. If a memory object is initialized on all paths
from the program entry (usually as “main” function) to the
current reference site, the memory object in this site has
the property “define”. If on some path the memory object
is not initialized, the property will be “undefine”. The
initialization through indirect memory operations (e.g. the
deference of pointers) results in a property “may define”.
To solve the problem we first invoke the transfer function

evaluator to compute a transfer function for each proce-
dure. The transfer function of one procedure says that
which global variables are modified by this procedure. In
fact the transfer function evaluator performs an interpro-
cedural modified side effect analysis to the whole program.
The side effect analysis can distinguish “must” and “may”
mod information:
i. If on every path in the procedure form entry to exit the

global variable is modified by direct assignments, the
variable is “must mod”.

ii. Otherwise if in every path variable is modified by ei-
ther direct or indirect assignments, the variable is
“may mod”.

Propagate_on_proc (proc)
Begin

changed ←false;
for each node scc of CFG SCC_DAG in

topological order
if scc is not a recursive cycle and contains basic

block bb
 changed ∨←

call Propagate_on_ bb (bb);
else

 changed ←true;
 while (changed)

 changed ← false;
 for each bb of scc do
 changed ∨←

call Propagate_on_loop (bb);
return changed;

End

Figure 4 The algorithm for interprocedural data flow
value propagation

/* Interprocedura dataflow value propagator */

Dataflow_value_Propagator(call_graph)
Begin

for each node scc of call_graph’s SCC_DAG in
 topological order
if scc is not a recursive cycle and contains proce-

dure proc
call Propagate_on_proc(proc)

else
 changed ←true;
 while (changed)

 changed ← false;
 for each proc of scc do
 changed ∨←

call Propagate_on_proc (proc);
End

iii. Otherwise the variable must not be modified on some
of the paths, so it is “may not mod”

We compute the transfer function of a procedure by build-
ing SSA form for the procedure first. If there are multiple
exit nodes in the CFG, we connect all the exits to a unique
exit node, called “fake exit”. We insert a SSA Φ-function
in the “fake exit”, called “exit Φ”, for each global variable
whose value is modified or referenced in the procedure
body or in the body of procedures invoked by this proce-
dure. After building SSA form, we start to find the possi-
ble definitions of each global variable appeared in the exit
Φ backwards from the fake exit to the entry in order to
determine the modified property for the variable.

The dataflow value propagator propagates the modifica-
tion property at procedure entry to the exit. The “must
mod” and “may mod” value of a transfer function are both
regarded as “define” in this phase. The “may not mod”
value is regarded as “undefine” here. We only propagate
for scalar variables that are either local or global currently.
The experimental results are displayed in Table 3. The
columns of the table identify:

 Example : the benchmark name ;
 KLOC: the size of the benchmark (line numbers

counted by kilo lines);
 Time: the time for checking the benchmark;
 Reports: the total number of warnings produced on the

benchmark;
 Bugs: the number of true bugs found;

 FP Rate: the false positive rate;

Example Kloc
Time
(sec)

Reports Bugs FP
Rate

mcf 0.9 0.01 3 3 0%

bzip2 2.4 0.05 0 0 0%

bftpd-2.3 2.8 0.08 2 1 50%

gzip 3.6 0.11 1 1 0%

HyperSAT-
1.7 6 0.11 1 0 100%

parser 7.4 0.7 0 0 0%

TOTAL 23.1 1.06 7 5 28.6%

We have used compiler GCC with the warning option –
Wuninitialized to check the uninitialized reference for the
examples in Table 3. However no warnings are reported.
This is mainly because GCC can only check uninitialized
reference for auto variables intraprocedurally.

5. Related work
In the literature of pointer analysis, much work has been
devoted into improving the precise and efficiency from

flow-sensitivity and context-sensitivity [2, 4, 5, 9-13].
However, field-sensitivity is somehow not taken seriously
as the former two properties since there is not so much
work in the literature. Due to the widely uses of aggregate
objects in practical programs, the field-sensitivity can
greatly impact the precision of pointer analysis. Steens-
gaard provided a field-sensitive version [1] of his original
work [4]. Yong et al. proposes a framework of field-
sensitive points-to analysis that covers various levels of
field-sensitivity [14]. They use separated variables to
represent different fields. Their framework is designed to
be able to handle type casing presenting in many C pro-
grams. Pearce et al. present a novel approach for precisely
modeling structural variables and indirect function calls
[6]. In their work field reference expressions are translated
into a form of a variable plus a field id in the constraint
system. Whaley’s work [12] is also field-sensitive. How-
ever, his method was originally designed for Java and he
did not discuss how to handle type casting.

Mygcc [15] is the first checking technique to combine
checking and compiling together in order to do permanent
checking. They call the checking is permanent because
programmers can check programs while compiling the
programs, avoiding extra time cost. Integrating checking
to compiling also enables a software development method
in which checking permanently accompanies evolution
because compiling is always necessary in coding phase.
However, their approach is not interprocedural. Other
checking tools like Fast check [16], Saturn [17], Calysto
[18] is not permanent.

6. Conclusion and future work
We have introduced our work of constructing an aggres-
sive framework for program analysis in order to do error
checking in Open64. The framework integrates intrapro-
cedural analysis into interprocedural phase so that we can
do flow- and context-sensitive whole program analysis.
We have also improved the original alias analysis to be
field-sensitive and compared the three unification-based
methods.

In the future, we are going to finish the pointer analysis
architecture. We intend to implement a field-sensitive
inclusion-based points-to analysis immediately after the
unification-based method. To make the analysis more
scalable, we will adopt the bootstrapping strategy, in-
spired by [13] that partitions the whole program into many
slices. Statements that directly modified pointers in the
same alias class will be put into the same slice. If we want
to obtain the inclusion-based result of a pointer, it suffices
to restrict the inclusion-based analysis only to the slice
that directly modified the pointer and the slices that modi-
fy pointers which may point to the pointer. Since Ander-
son-styled pointer analysis has the cubic time complexity,

Table 3. The uninitialized reference checking of scalar variables

the bootstrapping method makes use of a simple formula
to improve its efficiency:

3 3 3
1 2 1 2()x x x x+ ≥ + .

The larger the program is, the more analysis time we can
save. We have not implemented it yet.

Benefiting from the unification-based points-to analysis,
we have designed a scalable flow- and context-sensitive
pointer analysis. The analysis takes advantage of the
points-to graph given by the unification-based analysis to
incrementally build SSA form while analyzing points-to
set of each variable. We called the analysis “hierarchical
analysis” since we analyze pointers in the increasing order
of Steensgaard pointer graph. The analysis is under devel-
opment currently.

7. Reference
[1] Steensgaard, B. Points-to Analysis by Type Inference
of Programs with Structures and Unions. In Proceedings
of the Proceedings of the 6th International Conference on
Compiler Construction. Springer-Verlag, 1996.
[2] Cheng, B.-C. and Hwu, W.-M. W. Modular
interprocedural pointer analysis using access paths: design,
implementation, and evaluation. In Proceedings of the
Proceedings of the ACM SIGPLAN 2000 conference on
Programming language design and implementation.
ACM, Vancouver, British Columbia, Canada, 2000.
[3] Muchnick, S. S. Advanced compiler design and
implementation. Morgan Kaufmann Publishers Inc., 1997.
[4] Steensgaard, B. Points-to analysis in almost linear time.
In Proceedings of the Proceedings of the 23rd ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages. ACM, St. Petersburg Beach,
Florida, United States, 1996.
[5] Andersen, L. O. Program Analysis and Specialization
for the C Programming Language PhD., University of
Copenhagen, DIKU, 1994.
[6] Pearce, D. J., Kelly, P. H. J. and Hankin, C. Efficient
field-sensitive pointer analysis of C. ACM Trans.
Program. Lang. Syst., 30, 1 2007), 4.
[7] Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N.
and Zadeck, F. K. Efficiently computing static single
assignment form and the control dependence graph. ACM
Trans. Program. Lang. Syst., 13, 4 1991), 451-490.
[8] Chow, F. C., Chan, S., Liu, S.-M., Lo, R. and Streich,
M. Effective Representation of Aliases and Indirect
Memory Operations in SSA Form. In Proceedings of the
Proceedings of the 6th International Conference on
Compiler Construction. Springer-Verlag, 1996.
[9] Chase, D. R., Wegman, M. and Zadeck, F. K. Analysis
of pointers and structures. In Proceedings of the

Proceedings of the ACM SIGPLAN 1990 conference on
Programming language design and implementation.
ACM, White Plains, New York, United States, 1990.
[10] Wilson, R. P. and Lam, M. S. Efficient context-
sensitive pointer analysis for C programs. In Proceedings
of the Proceedings of the ACM SIGPLAN 1995
conference on Programming language design and
implementation. ACM, La Jolla, California, United States,
1995.
[11] Chatterjee, R., Ryder, B. G. and Landi, W. A.
Relevant context inference. In Proceedings of the
Proceedings of the 26th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages.
ACM, San Antonio, Texas, United States, 1999.
[12] Whaley, J. and Lam, M. S. Cloning-based context-
sensitive pointer alias analysis using binary decision
diagrams. In Proceedings of the Proceedings of the ACM
SIGPLAN 2004 conference on Programming language
design and implementation. ACM, Washington DC, USA,
2004.
[13] Kahlon, V. Bootstrapping: a technique for scalable
flow and context-sensitive pointer alias analysis. In
Proceedings of the Proceedings of the 2008 ACM
SIGPLAN conference on Programming language design
and implementation. ACM, Tucson, AZ, USA, 2008.
[14] Yong, S. H., Horwitz, S. and Reps, T. Pointer
analysis for programs with structures and casting. In
Proceedings of the Proceedings of the ACM SIGPLAN
1999 conference on Programming language design and
implementation. ACM, Atlanta, Georgia, United States,
1999.
[15] Volanschi, N. A Portable Compiler-Integrated
Approach to Permanent Checking. In Proceedings of the
Proceedings of the 21st IEEE/ACM International
Conference on Automated Software Engineering. IEEE
Computer Society, 2006.
[16] Cherem, S., Princehouse, L. and Rugina, R. Practical
memory leak detection using guarded value-flow analysis.
In Proceedings of the Proceedings of the 2007 ACM
SIGPLAN conference on Programming language design
and implementation. ACM, San Diego, California, USA,
2007.
[17] Dillig, I., Dillig, T. and Aiken, A. Sound, complete
and scalable path-sensitive analysis. In Proceedings of the
Proceedings of the 2008 ACM SIGPLAN conference on
Programming language design and implementation.
ACM, Tucson, AZ, USA, 2008.
[18] Babic, D. and Hu, A. J. Calysto: scalable and precise
extended static checking. In Proceedings of the
Proceedings of the 30th international conference on
Software engineering. ACM, Leipzig, Germany, 2008.

	Introduction
	Framework
	Field-sensitive pointer analysis
	Flow- and context-sensitive dataflow analysis
	Checking uninitialized reference

	Related work
	Conclusion and future work
	Reference

